Cell ensemble mechanisms underlying memory formation

Kaoru Inokuchi

Department of Biochemistry, Graduate School of Medicine & Pharmaceutical Sciences, University of Toyama, Japan

Abstract

Memories are not stored in isolation from other memories but are integrated into associative networks. At the same time, each memory has its own identity. Because association of related memories, with keeping the identity of each memory, is the fundamentals of knowledge formation, it is important to understand the underlying mechanisms. In this seminar, I will show that sharing memory engram cells underlies the linkage between memories (1), while synapse-specific plasticity guarantees the identity and storage of individual memories (2). In addition, I will suggest that engram cells in the hippocampus are organized into sub-ensembles representing distinct pieces of information, which are then orchestrated to constitute an entire memory (3).

References

BIOGRAPHICAL SKETCH

1979 Graduated from Nagoya University.
1984 Ph.D degree from Nagoya University, work on gene regulation mechanisms in Escherichia coli.
1985 Researcher, Mitsubishi Kagaku Institute of Life Sciences, Tokyo, gene regulation in *Saccharomyces cerevisiae*.
1991 Postdoc in Eric Kandel lab, Columbia University in New York, memory mechanisms of *Aplysia californica*.
1993 Senior Researcher, Mitsubishi Kagaku Institute of Life Sciences, Tokyo, molecular and cellular mechanisms underlying memory formation in mice.
2009–present Professor, University of Toyama, memory engram.

AWARDS

- 2010 Tokizane Memorial Award
- 2013 Prizes for Science and Technology, The Commendation for Science and Technology by the MEXT, Japan
- 2018 Toray Science and Technology Prize
- 2019 Takamine Memorial Daiichi Sankyo Award
- 2019 Naito Memorial Award for the Advancement of Science
- 2019 Medal of Honor with Purple Ribbon, Cabinet Office, Japan

PUBLICATIONS